Synthesis of Some New 2-Mercapto/Hydrizino 5, 6, 7, 8 - Tetrahydro Quinazoline Derivatives as *In-Vitro* Anthelimentic Agents

^{*}P. P. SriKumar, T. S. Lakshmi and K. Sekhar

^{*}Department of Pharmaceutical Chemistry, Hindu College of Pharmacy, Amaravathi Road, Guntur 522 002,

India.

E-mail: ^{*}drpravi.p@gmail.com

ABSTRACT

A new series of substituted 5, 6, 7, 8 tetrahydro quinazoline derivative has been synthesized from a mixture of methyl/ethylacetoacetate with different substituted aromatic/ hetero aromatic aldehydes. Then treated with aminoguanidines / thiourea afforded 2-hydrizino substituted 5, 6, 7, 8-tetrahydro quinazoline $(D_{1-8})/$ 2-mercapto substituted 5, 6, 7, 8-tetrahydro quinazoline derivatives (E_{1-8}). The structures of newly synthesized compounds were confirmed by spectral data (IR, H¹NMR, C¹³NMR, Mass spectra and Elemental analysis). The synthesized compounds were also evaluated for their anthelimentic activity using earth worms of nearly equal size (8 cm±1) were selected randomly for present study and Albendazole was used as reference standard. The compounds which contains Cl and F groups substituted at *Para* position on phenyl ring at C₅ of substituted 5, 6, 7, 8 tetrahydro quinazoline derivatives showed good activity when compared with reference standard.

Keywords: Tetrahydro quinazoline, anthelimentic activity, 2-mercapto/r-hydrizinyl and Albendazole (ALB)

1. INTRODUCTION

Gastrointestinal parasites create a serious threat to the production of livestock in developing nations. As per WHO, only few drugs are frequently used in the treatment of helminthes in human beings. Helminthes parasite infections are global problems with serious social and economic repercussions in developing countries. Some type of dangerous helminthes infections like filariasis has only a few therapeutic modalities at present. The universal requirement on heterocyclic compounds for their potential activities against microorganisms and significance in the pharmaceutical field prompted us to synthesize pyrimidines and pyrazolines from cyclic keto esters. Cyclohex-2-enones are useful in the synthesis of organic compounds ¹⁻⁵. Synthesis of cyclohex-2-enones involves Knoevenagel condensation of acetylacetone or ethyl acetoacetate with aromatic aldehydes in the presences of methylamine in ethanol, yielded cyclic β -keto esters. We have found that the quinqzoline and condensed quinazoline derivatives are found to exhibit potent biological⁶⁻¹¹ and pharmaceutical activities. In view of the above and in a continuation of our interest in the development of quinazoline/quinazolinone chemistry. We have synthesized new 2-mercapto/hydrizino substituted 5, 6, 7, 8 tetrahydro quinazoline derivatives for anthelimentic activity.

2. MATERIALS AND METHODS

2.1 Preparation of 3-aryl-2, 4-biscarbethoxy-5-hydroxy-5-methylcyclohexanones (C_{1-8})

All the compounds C_{1-8} were prepared by using the procedure of Pandiarajan et al¹². A mixture of methyl/ethylacetoacetate (A) (100 mmoles), aromatic benzaldehyde (B) (50 mmoles) and methylamine (50 mmoles) in ethanol (50 mL) was warmed on a water bath for about 10 min. The reaction mixture was kept overnight for one / two days respectively. The separated solid was filtered and it was purified by recrystallisation from ethanol.

2.2 Preparation of D_{1-8} & E_{1-8}

Compound C_{1-8} (10 mmoles) was dissolved in ethanol (3mL) and after addition of hydrazine hydrate (15 mmoles) the reaction mixture was heated under reflux for 2h. Then the mixture was cooled and poured into crushed ice, and the precipitate was filtered off, dried, and recrystallized from ethanol.

3. EXPERIMENTAL PROCEDURE

Melting points of the newly synthesized compounds were determined in open capillary tubes and were uncorrected. IR Spectra were recorded on a Perkin – Elmer BXF₁, FT-IR spectrophotometer using KBr disc and the values expressed in cm⁻¹. H¹NMR Spectra were recorded on a Bruker AMX, 400 MHz, using TMS as an internal standard and the values are expressed in ppm. Mass Spectrum was recorded on Agilent 1100 ESI- Mass (turbo spray) spectrophotometer. C H N analysis was carried out on Carlo Erba 1108 Elemental analyzer. Homogeneity of the compounds was checked by TLC on silica gel plates.

3.1 4 - ethoxy - 2 - hydrazinyl - 7 - hydroxyl - 7 - methyl - 5, 6, 7, 8 - tetrahydro - 5 - (p - tolyl) - quinazoline - 6 - ethylcarboxylate (D_1) .

m.p. 98-100⁰C, yield 82%, Rf 0.61; IR (KBr, Cm-1) 3400 (NH, Str), 1560 (C=N, Str), 1170 (C-O-C, Str), 1690 (C=O of $COOC_2H_5$, Str), 3090 (OH, Str), 2810 (C-H, Str); H¹ NMR (δ ppm) 5.34 (2H,s,H-N-H), 10.15 (1H,s,N-H), 10

H), 4.72 (1H, s, OH at C₇), 1.06 (3H, s, Me at C₇), 1.28 (3H, s, Me of COOC₂H₅), 3.41 (2H, d, CH₂ of COOC₂H₅), 2.85 (3H, s, Me of OC₂H₅), 3.26 (2H, d, CH₂ of OC₂H₅), 7.01- 7.26 (4H, m, Ar-H), 4.63 (1H, s, 5Ha), 3.31 (1H, s, 6Ha), 1.98 (3H, s, Ar-CH₃ at C₅), 5.08 (2H, s, 8 Ha & 8 He); C¹³NMR (δ ppm): C₂-139.89, C₄-138.73, C₅ – 60.56, C₆-76.74, C₇-77.37, C₈-60.48, C₉-136.22, C₁₀-129.23, CH₂ of OC₂H₅ at C₄-54.26, CH₃ of OC₂H₅ at C₄-21.01, C=O of COOC₂H₅ at C₆ -172.95, CH₂ of COOC₂H₅ at C₆-53.84, CH₃ of COOC₂H₅ at C₆-21.84, CH₃ at C8-16.45, Ar- CH₃ at C₅ -31.03, aromatic carbons: 1'-129.11, 128.80,128.97,127.50,127.36, 126.94; Mass (*m*/*z*) 400 (M+,18%), 359 (100%); anal. calcd(found) 63.00 (63.02), 6.98 (7.02), 14.06 (13.98) for C₂₁H₂₈O₄N₄.

3.2 4 - ethoxy - 2 - hydrazinyl - 7 - hydroxyl - 7 - methyl - 5, 6, 7, 8 - tetrahydro - 5 - phenylquinazoline - 6 - ethylcarboxylate (D_2) .

m.p. 192-194⁰C, yield 91%, Rf 0.65; IR (KBr, Cm-1) 3420 (NH, Str), 1480 (C=N,str), 1220 (C-O-C, str), 1665 (C=O of COOC₂H₅, str), 3030 (OH, Str), 2870 (C-H, Str); H¹ NMR (δ ppm) 5.85 (2H, s, H-N-H), 9.18 (1H, s, N-H), 4.17 (1H, s,OH at C₇), 1.05 (3H, s, Me at C₇), 2.46 (3H, s, Me of COOC₂H₅), 3.86 (2H, d, CH₂ of COOC₂H₅), 2.67 (2H, s,), 3.82 (2H, d, CH₂ OC₂H₅), 7.102- 7.260 (5H, m, Ar-H), 4.62 (1H, s, 5Ha), 3.34 (1H, s, 6Ha) , 5.24 (2H, s, 8 Ha & 8 He); Mass (*m*/*z*) 386 (M+,08%); anal.calcd(found) 62.17 (62.36), 6.70 (6.90), 14.50 (14.26) for C₂₀H₂₆O₄N₄.

3.3 4 - ethoxy - 2 - hydrazinyl - 7 - hydroxyl - 7 - methyl - 5, 6, 7, 8 - tetrahydro - 5 - (p-chlorophenyl) - quinazoline - 6 - ethylcarboxylate (D_3) .

m.p. $122-124^{0}$ C, yield 84%, Rf 0.71; IR (KBr, Cm-1) 3420 (NH, str), 1460 (C=N, str), 1230 (C-O-C, str), 1670 (C=O of COOC₂H₅, str), 3240 (OH, str), 2825 (C-H, str), 780 (C-Cl, str); H¹ NMR (δ ppm) 5.40 (2H,s,H-N-H), 10.41 (1H,s,N-H), 4.10 (1H, s, OH at C₇), 1.11 (3H, s, Me at C₇), 2.17 (3H, s, Me of COOC₂H₅), 3.88 (2H, d, CH₂ of COOC₂H₅), 2.32 (3H,s, Me of OC₂H₅), 3.32 (2H, d, CH₂ of OC₂H₅), 7.03- 7.29 (4H, m, Ar-H), 4.28 (1H, s, 5Ha), 3.96 (1H, s, 6Ha), 5.46 (2H, s, 8Ha & 8H e). Mass (*m*/*z*) 420.5 (M+, 09%); anal. calcd (found) 57.07 (57.28), 5.94 (6.12), 13.31 (13.16) for C₂₀H₂₅O₄N₄Cl

3.4 4 - ethoxy - 2 - hydrazinyl - 7 - hydroxyl -7 - methyl - 5, 6, 7, 8 - tetrahydro - 5 - (4 - fluorophenyl) quinazoline - 6 - ethylcarboxylate (D_4).

m.p. 100-102^oC, yield 45%, Rf 0.72; IR (KBr, Cm-1): 3355 (NH, Str), 1490 (C=N, Str), 1265 (C-O-C, Str), 1655 (C=O of COOC₂H₅, Str), 3060 (OH, Str), 2845 (C-H, Str), 1080 (C-F, str); H¹ NMR (δ ppm) 5.20 (2H, s, H-N-H), 10.05 (1H, s, N-H), 4.86 (1H, s, OH at C₇), 1.27 (3H, s, Me at C₇), 1.64 (3H, s, Me of COOC₂H₅), 3.18 (2H, d, CH₂ of COOC₂H₅), 2.99 (3H, s Me of OC₂H₅), 3.42 (2H, d, CH₂ of OC₂H₅), 7.00- 7.26 (4H, m, Ar-H), 4.78 (1H, s, 5Ha), 3.26 (1H, s, 6Ha), 5.02 (2H, s, 8Ha & 8He); Mass (*m*/*z*) 404 (M+, 12%); anal. calcd (found) 59.40 (59.53), 6.18 (6.33), 13.86 (13.78) for C₂₀H₂₅O₄N₄F.

$3.5\ 4$ - methoxy - 7 - methyl - 2 - hydraziny - 7 - hydroxy - 5, 6, 7, 8 - tetrahydro - 5 - (p - tolyl) phenylquinazoline - 6 - methylcarboxylate (D₅).

m.p. $112-114^{0}$ C, yield 65%, Rf 0.63; IR (KBr, Cm-1) 3450 (NH, Str), 1485 (C=N, Str), 1245 (C-O-C, Str), 1660 (C=O of COOCH₃,Str), 3230 (OH, Str), 2890 (C-H, Str); H¹ NMR (δ ppm) 5.40 (2H, s, H-N-H), 10.06 (1H, s, N-H), 4.70 (1H, s, OH at C₇), 2.05 (3H, s, Me at C₇), 1.60 (3H, s, Me of COOCH₃), 1.89 (3H, s, Me of OCH₃), 2.43 (3H, s, Ar-CH₃ at C₅) 7.01- 7.33 (4H, M, Ar-H), 3.42 (1H, s, 5Ha), 3.00 (1H, s, 6Ha), 5.51 (2H, s, 8Ha & 8He); Mass (*m*/*z*) 372 (M+, 11%); anal.calcd (found) 61.29 (61.46), 6.45 (6.52), 15.05 (15.08) for C₁₉H₂₄O₄N₄

3.6 4 - methoxy - 7 - methyl - 2 - hydraziny - 7 - hydroxy - 5, 6, 7, 8 - tetrahydro - 5 - phenylquinazoline - 6 - methylcarboxylate (D_6) .

m.p. $170-172^{0}$ C, yield 63%, Rf 0.75; IR (KBr, Cm-1) 3335 (NH, Str), 1485 (C=N, Str), 1185 (C-O-C, Str), 1655 (C=O of COOCH₃,Str), 3060 (OH, Str), 2880 (C-H, Str); H¹ NMR (δ ppm) 5.24 (2H, s, H-N-H), 9.22 (1H,s,N-H), 4.56 (1H, s, OH at C₇), 1.25 (3H, s, Me at C₇), 1.60 (3H, s, Me of COOCH₃), 1.89 (3H,s, Me of OCH₃), 7.14-7.39 (4H,m,Ar-H), 3.46 (1H, s,5Ha), 3.01 (1H,s,6Ha), 4.92 (2H, s, 8Ha & 8He); Mass (*m*/*z*) 358 (M+, 22%); anal.calcd(found) 60.97 (61.08), 6.14 (6.23), 15.60 (15.58) for C₁₈H₂₂O₄N₄

3.7 4 - methoxy - 7 - methyl - 2 - hydrazinyl - 7 - hydroxy - 5, 6, 7, 8 - tetrahydro - 5 - (4 - chlorophenyl) quinazoline - 6 - methylcarboxylate (D_7).

m.p. 96-98°C, yield 66%, Rf 0.61; IR (KBr, Cm-1) 3379 (NH, Str), 1489 (C=N, Str), 1295 (C-O-C, Str), 1676 (C=O of COOCH₃,Str), 3185 (OH, Str), 2876 (C-H, Str), 816 (C-Cl, str); H¹ NMR (δ ppm) 5.91 (2H, s, H-N-H), 9.09 (1H, s, N-H), 4.81 (1H, s, OH at C₇), 0.96 (3H, s, Me at C₇), 2.60 (3H, s, Me of COOCH₃), 1.37 (3H, s, Me of OCH₃), 7.06-7.31 (3H, m, Ar-H), 3.52 (1H, s, 5Ha), 2.97 (1H, s, 6Ha), 5.36 (1H, s, 8Ha&8He); Mass (*m*/*z*) 392 (M+, 10%); anal.calcd(found) 55.03 (55.06), 5.35 (5.54), 14.26 (14.15) for C₁₈H₂₁O₄N₄Cl

3.8 4 - methoxy - 7 - methyl - 2 - hydrazinyl - 7 - hydroxy - 5, 6, 7, 8 - tetrahydro - 5 - (4 -florophenyl) quinazoline - 6 - methylcarboxylate (D_8) .

m.p. 136-138^oC, yield 58%, Rf 0.42; IR (KBr, Cm-1) 3353 (NH, str), 1495 (C=N, str), 1279 (C-O-C, str), 1657 (C=O of COOCH₃, str), 3224 (OH, str), 2842 (C-H, str), 1076 (C-F, str); H¹ NMR (δ ppm) : 5.72 (2H, s, H-N-H), 10.03 (1H, s, N-H), 4.34 (1H, s, OH at C₇), 1.17 (3H, s,-Me at C₇), 2.68 (3H, s, Me of COOCH₃), 1.25 (3H, s, Me of OCH₃), 7.06-7.31 (3H, m, Ar-H), 3.64 (1H, s, 5Ha), 2.86 (1H, s, 6Ha), 5.62 (2H, s, 8Ha&8He); Mass (*m*/*z*) 376 (M+, 05%); anal.calcd (found) 57.44 (57.66), 6.11 (6.24), 14.08 (13.95) for C₁₈H₂₃O₄N₄F

3.9 7 - hydroxy - 2 - mercapto - 4 - methoxy - 7 - methyl - 5, 6, 7, 8 - tetrahydro - 5 - (p - tolyl) quinazoline - 6 - ethylcarboxylate (E_1) .

m.p. $252-254^{6}$ C, yield 78%, Rf 0.66; IR (KBr, Cm-1) 1263 (C-O-C, str), 1523 (C=N, str), 3063 (OH, str), 1667 (C=O of COOC₂H₅,str), 1139 (SH, str); H¹ NMR (δ ppm) 3.32 (1H, s, S-H), 2.81(3H, s, Me at C₇), 4.42 (1H, s, OH at C₇), 1.56 (3H, s, Me of COOC₂H₅), 3.86 (2H, d, CH₂ of COOC₂H₅), 1.64 (3H, s, Me of O C₂H₅), 3.40 (2H, d, CH₂ of O C₂H₅), 2.12 (3H, s, Ar-CH₃ at C₅), 7.08-7.26 (4H, m, Ar-H), 4.45 (1H, s, 5Ha), 3.16 (1H, s, 6Ha) 4.62 (2H, s, 8Ha&8He); Mass (*m*/*z*) 402 (M+, 15%); anal.calcd(found) 62.68 (62.74), 6.46 (6.66), 6.96 (6.54) for C₂₁H₂₆O₄N₂S

3.10 7 - hydroxy - 2 - mercapto - 4 - methoxy - 7 - methyl - 5, 6, 7, 8 - tetra hydro - 5 - phenylquinazoline - 6 - ethylcarboxylate (E_2) .

m.p. 220-222⁰C, yield 68%, Rf: 0.69; IR (KBr, Cm-1) 3265 (NH, str), 1260 (C-O-C, str), 1546 (C=N, str), 3037 (OH, str), 1675 (C=O of COOC₂H₅, str), 1143 (SH, str); H¹ NMR (δ ppm) : 3.03 (1H, s, SH), 2.95 (3H, s, Me at C₇), 4.48 (1H,s,OH at C₇), 1.25 (3H, s, Me of COOC₂H₅), 3.46 (2H, d, CH₂ of COOC₂H₅), 1.70 (3H, s, Me of OC₂H₅), 3.26 (2H, d, CH₂ of O C₂H₅), 7.08-7.26 (4H, m, Ar-H), 3.75 (1H, s, 5Ha), 3.30 (1H, s, 6Ha) 4.79 (2H, s, 8Ha&8He); Mass (*m*/*z*) 388 (M+, 19%); anal.calcd(found) 61.85 (62.02), 6.18 (6.22), 7.21 (7.12) for C₂₀H₂₄O₄N₂S

3.11 7 - hydroxy - 2 - mercapto - 4 - methoxy - 7 - methyl - 5, 6, 7, 8 - tetrahydro - 5 - (p -chlorophenyl) quinazoline - 6 - ethylcarboxylate (E_3) .

m.p. 196-198⁰C, yield 78%, Rf 0.69; IR (KBr, Cm-1) 1190 (C-O-C, str), 1546 (C=N, str), 3376 (OH, str), 1646 (C=O of COOC₂H₅, str), 1146 (SH, str), 763 (C-Cl, str); H¹ NMR (δ ppm) 3.24 (1H, s, S-H), 2.95 (3H, s, Me at C₇), 4.69 (1H, s, OH at C₇), 1.43 (3H, s, Me of COOC₂H₅), 3.14 (2H, d, CH₂ of COOC₂H₅), 1.75 (3H, s, Me of OC₂H₅), 3.02 (2H, d, CH₂ of OC₂H₅) 7.04 -7.20 (4H, m, Ar-H), 4.75 (1H, s, 5Ha), 3.06 (1H, s, 6Ha) 4.70 (2H, s, 8Ha&8He); Mass (*m*/*z*) 422 (M+, 16%); anal.calcd(found) 56.80 (56.96), 5.44 (5.48), 6.62 (6.56) for C₂₀H₂₃O₄N₂SCl

3.12 7 - hydroxy - 2 - mercapto - 4 - methoxy - 7 - methyl - 5, 6, 7, 8 - tetrahedro - 5 - (p - fluorophenyl) quinazoline - 6 - ethylcarboxylate (E_4) .

m.p. 262-264[°]C, yield 54%, Rf 0.63; IR (KBr, Cm-1) 1242 (C-O-C, str), 1567 (C=N, str), 3235 (OH, str), 1665 (C=O of COOC₂H₅, str), 1215 (SH, str), 1054 (C-F, str); H¹ NMR (δ ppm) 3.27 (1H, s, SH), 2.67 (3H, s, CH₃ at C₇), 4.41 (1H, s, OH at C₇), 1.56 (3H, s, Me of COOC₂H₅), 3.81 (2H, d, CH₂ of COOC₂H₅) 1.70 (3H, s, Me of O C₂H₅), 3.34 (2H, d, CH₂ of OC₂H₅), 7.03- 7.26 (4H, m, Ar-H), 4.57 (1H, s, 5Ha), 3.41 (1H, s, 6Ha) 5.04 (2H, s, 8Ha&8He); Mass (*m*/*z*) 406 (M+, 10%) anal.calcd(found) 59.11 (59.16), 5.66 (5.69), 6.89 (6.79) for C₂₀H₂₃O₄N₂SF

3.137 - hydroxy - 2 - mercapto - 4 - methoxy - 7 - methyl - 5, 6, 7, 8 - tetrahydro - 5 - (p - tolyl) quinazoline - 6 - methylcarboxylate (E_5).

m.p. 244-246⁰C, yield 52%, Rf 0.67; IR (KBr, Cm-1) 1260 (C-O-C, str), 1543 (C=N, str), 3268 (OH, str), 1656 (C=O of COOCH₃, str), 1232 (SH, str); H¹ NMR (δ ppm) 3.23 (1H, s, SH), 2.91(3H, s, Me at C₇), 4.72 (1H, s, OH at C₇), 1.66 (3H, s, Me of COOCH₃), 1.47 (3H, s, Me of OCH₃), 7.26 (4H, m, Ar-H), 2.24 (3H, s, Ar-Me at C₅), 1.47 (1H, s, 5Ha), 3.06 (1H, s, 6Ha), 5.67 (2H, s, 8Ha&8He); Mass (*m*/*z*) 374 (M+, 20%); anal.calcd(found) 60.90 (60.99), 5.88 (6.11), 7.47 (7.49) for C₁₉H₂₂O₄N₂S

3.14 7 - hydroxy - 2 - mercapto - 4 - methoxy - 7 - methyl - 5, 6, 7, 8 - tetrahydro - 5 - phenylquinazoline - 6 - methylcarboxylate (E_6) .

m.p. 232-234⁰C, yield 84%, Rf 0.67; IR (KBr, Cm-1) 1247 (C-O-C, str), 1530 (C=N, str), 3356 (OH, str), 1667 (C=O of COOCH₃, str), 1236 (SH, str); H¹ NMR (δ ppm) 3.32 (1H, s, SH), 2.95 (3H, s, Me at C₇), 2.41 (1H, s, OH at C₇), 1.25 (3H, s, Me of COOCH₃), 1.70 (3H, s, Me of OCH₃), 7.26 (4H, m, Ar-H), 4.05 (1H, s, 5Ha), 4.30 (1H, s, 6Ha) 4.90 (2H, s, 8Ha&8He); Mass (*m*/*z*) 360 (M+, 12%); anal.calcd(found) 60.00 (60.02), 5.50 (5.58), 7.70 (7.42) for C₁₈H₂₀O₄N₂S

3.15 7 - hydroxy - 2 - mercapto - 4 - methoxy - 7 - methyl - 5, 6, 7, 8 - tetrahydro - 5 - (p -chlorophenyl) quinazolin - 6 - methylcarboxylate (E_7) .

m.p. 148-150⁰C, yield 72%, Rf 0.62; IR (KBr, Cm-1) 1267 (C-O-C, str), 1543 (C=N, str), 3237 (OH, str), 1693 (C=O of COOCH₃, str), 1198 (SH, str), 784 (C-Cl, str); H¹ NMR (δ ppm) 3.15 (1H, s, SH), 2.25 (3H, s, Me at C₇), 2.12 (1H, s, OH at C₇), 1.56 (3H, s, Me of COOCH₃), 1.04 (3H, s, Me of OCH₃), 7.60 (4H, m, Ar-H), 4.25 (1H, s, 5Ha), 4.06 (1H, s, 6Ha) 4.82 (2H, s, 8Ha&8He); Mass (*m*/*z*) 394 (M+, 08%) anal.calcd(found) 54.75 (54.81), 4.81 (4.86), 7.09 (7.02) for C₁₈H₁₉O₄N₂SCl

3.16 7 - hydroxy - 2 - mercapto - 4 - methoxy - 7 - methyl - 5, 6, 7, 8 - tetrahydro - 5 - (p - florophenyl) quinazolin - 6 - methylcarboxylate (E_8) .

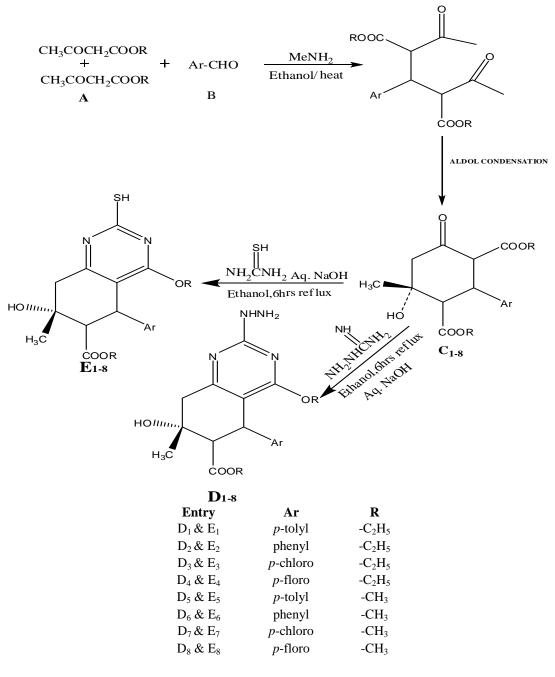
m.p. 162-164[°]C, yield 68%, Rf 0.45; IR (KBr, Cm-1) 1285 (C-O-C, str), 1545 (C=N, str), 3167 (OH, str), 1697 (C=O of COOCH₃ str), 1236 (SH, str), 1064 (C-F, str); H¹ NMR (δ ppm) 3.03 (1H, s, SH), 2.05 (3H, s, Me at C₇), 2.36 (1H, s, OH at C₇), 1.40 (3H, s, Me of COOCH₃), 1.62 (3H, s, Me of OCH₃), 7.18 (4H, m, Ar-H), 4.15 (1H, s, 5Ha), 4.56 (1H, s, 6Ha) 5.09 (2H, s, 8Ha&8He); Mass (*m*/*z*) 378 (M+, 13%); anal.calcd(found) 57.14 (57.40), 5.02 (5.31), 7.40 (7.36) for C₁₈H₁₉O₄N₂SF

3.17 Experimental animals Collection¹³⁻¹⁴

Indian adult earthworm (*P. Posthuma*) were collected from Guntur near Amaravathi road fields area, Andhra Pradesh, India, were used to study. The collected earthworms were, washed with normal saline to remove all faecal matter. The earthworms of 8 cm \pm 1 in length and 1.5-2 cm in width were used for all experimental protocol. The earthworm's resembled the intestinal round worm parasites of human beings both anatomically and physiologically and hence where used to study the anthelimentic activity.

3.18 Evaluation of Anthelmintic activity¹⁵

The synthesized compounds were screened for anthelimentic activity. Earth worms of nearly equal size 8 cm±1 were selected randomly for present study. The earth worms were acclimatized to the laboratory condition before experimentation. The earthworms were divided into three groups of six earth worms each. Six earthworms of nearly equal size were placed in standard drug solution and test compound's solutions at room temperature. Normal saline used as control. Standard drug and test compounds 10mg, 50mg and 100mg were dissolved in minimum quantity of dimethyl formamide (DMF) and adjusted the volume up to 15 ml with normal saline solution. Albendazole was used as a standard drug. The compounds were evaluated by the time taken for complete paralysis and death of earthworms. The mean lethal time for each test compound was recorded and compared with standard drug. The time taken by worms to become motionless was noted as paralysis time. To ascertain the death of the motionless worms were frequently applied with external stimuli, which stimulate and induce movement in the worms, if alive.


3.19 Statistical Analysis

Results were expressed as mean+SEM. statistical significance was determined by one-way analysis of variance (ANOVA) followed by Dunnet's test with the level of significance at p < 0.01 and p < 0.001.

4. RESULTS AND DISCUSSION

4.1 Chemistry

The series of heterocyclic $D_{1.8}$ & $E_{1.8}$ were newly synthesized by the reaction of $C_{1.8}$ with appropriate hydrazine hydrate & thiourea, after cyclization as presented in scheme-I. The IR, H¹NMR, C¹³NMR, Mass & Elemental analysis for the newly synthesized compounds are in accordance with the assigned structures. The IR (cm⁻¹) spectrum of compounds in $D_{1.8}$ series showed the stretching bands of NH group at 3335-3450 respectively. The IR (cm⁻¹) spectrum of compounds in $E_{1.8}$ series showed the stretching bands of SH group at 1150-1250 respectively. The presence of NH group for $D_{1.8}$ & the presence of SH group for $E_{1.8}$ series provides a strong evidence for the condensation & also confirms the formation of 2-mercapto/ hydrizinyl 5, 6, 7, 8 - tetrahydro quinazoline derivatives. The H¹NMR (ppm) spectra of $D_{1.8}$ & $E_{1.8}$ and their corresponding derivatives have been recorded in CDCl₃. In $D_{1.8}$ series the NH₂ chemical shift appears at δ 5.2 - 5.9 for two (2*H*) protons and NH chemical shift appears at δ 9.0 - 10.5 for one (1*H*) proton respectively. The presence of NH and NH₂ chemical shift in the proton NMR spectra of final compounds confirms the hydrizinyl protons at C_2 position of 5, 6, 7, 8 tetrahydro quinazoline derivatives in $D_{1.8}$ series.

Scheme-1

4.2 Anthelimintic activity

All the newly synthesized compounds screened for their anthelimentic activity. The observed results shown in Table-1. Among all the screened compounds some of the compounds showed moderate to considerable activity and particularly compounds D_3 , D_4 , D_7 , D_8 & E_3 , E_4 , E_7 and E_8 have enhanced activity when compared to reference standard Albendazole due to the presence of chlorine and fluorine at *para* position on C-5 phenyl ring at minimal dose of 10mg/mL. At the concentration of 10mg/ml D_3 , D_4 , D_7 , D_8 & E_3 , E_4 , E_7 and E_8 exhibited their good activity (P < 0.001) for time taken to paralysis and death when compared to standard Albendazole at 10mg/ml while increasing the concentration at 50mg/mL and 100mg/mL the compounds showed considerable activity (P < 0.01) by reducing the paralysis and death time when compared to standard.

5. CONCLUSION

The objective of this research work has to investigate anthelmintic activity of novel series of 2-substituted 5, 6, 7, 8 tetra hydro quinazolines prepared by the reaction of key intermediate C_{1-8} with hydrazine hydrate and thiourea. The results of the anthelmintic activity of D_{1-8} and E_{1-8} series showed moderate enhancement of activity. The compounds D_3 , D_4 , D_7 , $D_8 \& E_3$, E_4 , E_7 and E_8 emerged as the most active compound in exhibiting anthelmintic activity and rest of the compounds are having no significant activity when compared with the reference standard. Hence these series would be developed by as a novel class of anthelimentic agents. However further structural modifications is planned to increase the activity.

Time taken for paralysis and Death						
	Paralysis time (min)			Death time (min)		
Entry	10mg/ml	50mg/ml	100mg/ml	10mg/ml	50mg/ml	100mg/ml
D ₁	35.83 ± 1.537	56.83 ± 0.703	75.00 ± 4.280	34.16 ± 0.307	53.67 ± 2.076	74.16 ± 0.542
\mathbf{D}_2	45.33 ± 1.308	67.16 ± 0.746	82.25 ± 0.250	48.83 ± 2.210	55.83 ± 0.870	67.33 ± 0.760
D ₃	$25.33 \pm 1.174^{***}$	32.50 ± 0.500	48.50 ± 0.428	$19.33 \pm 1.202^{***}$	30.00 ± 3.055	45.00 ± 0.365
D_4	$24.23 \pm 0.980^{***}$	35.44 ± 1.820	49.55 ± 0.563	$20.67 \pm 0.550^{***}$	32.83 ± 1.187	52.44 ± 0.870
D ₅	43.56 ± 0.650	51.35 ± 1.085	60.00 ± 0.987	39.88 ± 1.156	51.00 ± 1.054	70.36 ± 0.683
D_6	40.00 ± 0.447	52.33 ± 1.874	64.33 ± 0.210	40.56 ± 1.080	56.83 ± 1.270	74.83 ± 0.307
\mathbf{D}_7	$27.67 \pm 2.028^{**}$	39.66 ± 0.330	44.83 ± 0.307	$20.33 \pm 1.745^{**}$	34.67 ± 1.783	48.90 ± 0.447
D_8	$25.36 \pm 1.067^{**}$	40.50 ± 0.619	48.83 ± 0.317	$21.50 \pm 1.607^{**}$	38.67 ± 0.802	51.17 ± 0.872
E ₁	34.83 ± 1.400	41.50 ± 2.094	54.33 ± 0.210	32.67 ± 1.308	45.33 ± 1.687	56.50 ± 0.428
\mathbf{E}_2	36.83 ± 2.380	42.17 ± 0.833	56.83 ± 0.600	38.00 ± 1.028	48.50 ± 0.619	62.16 ± 0.307
E ₃	$29.98 \pm 2.078^{**}$	34.30 ± 1.080	47.80 ± 0.109	$21.55 \pm 1.210^{**}$	35.16 ± 0.912	52.87 ± 0.507
$\mathbf{E_4}$	$26.00 \pm 1.930^{**}$	36.83 ± 0.401	52.00 ± 0.258	$23.83 \pm 1.515^{**}$	38.00 ± 1.125	53.66 ± 0.210
E ₅	39.67 ± 0.557	49.16 ± 0.401	64.83 ± 0.307	46.47 ± 1.667	63.33 ± 6.009	78.50 ± 0.562
E ₆	42.00 ± 0.447	56.33 ± 0.557	63.83 ± 0.307	32.17 ± 1.014	51.50 ± 0.806	75.00 ± 4.282
\mathbf{E}_{7}	$28.67 \pm 0.666^{**}$	29.50 ± 1.258	39.33 ± 0.333	$19.67 \pm 0.614^{***}$	38.33 ± 2.789	54.66 ± 0.494
E ₈	$27.50 \pm 1.360^{**}$	35.17 ± 1.447	45.00 ± 0.365	$20.50 \pm 0.763^{**}$	39.50 ± 3.500	60.67 ± 3.333
ALB	24.17 ± 1.558	-	-	18.50 ± 0.763	-	-
Control	-	-	-	-	-	-

Table-1: Anthelimintic activity of synthesized compounds $(D_{1-8} \& E_{1-8})$

All determinations were done in triplicate and results are expressed as Mean \pm SEM. P value was calculated by comparing with control by one-way ANNOVA. Control worms were alive up to 24 hrs of observation. **p < 0.01 and ***p < 0.001, Significantly different when compared with reference compound, Albendazole prototypes used for the study were designated as D₃, D₄, D₇, D₈ & E₃, E₄, E₇ and E₈ at 10mg/mL, 50mg/mL and 100mg/mL respectively and the standard drug Albendazole (ALB) was used at 10mg/ml.

6. ACKNOWLEDGMENT

The authors are thankful to the Management, Hindu College of Pharmacy for providing Lab facilities and to the Director, Laila Impex, Vijayawada, Andhrapradesh for providing spectral and analytical data.

7. REFERENCES

- 1. Pandiarajan, K., SabapathyMohan, R.T., Gomathi, R., Muthukumaran, G., Ind J Chem., (2009), 48B, 553-562.
- 2. Hemandez, R., Suarez, E., J Org Chem., (1994), 59, 2766, http://dx.doi.org/10.1021/jo00089a021.
- 3. Cocker, W., Grayson, D. H., Shannon, P. V. R., J Chem Soc Perkin Trans., (1995), 1, 1153, http://dx.doi.org/10.1039/p19950001153.
- Sobolev, A., Vos, M., Zuilhof, H. T., Saraber, F. C. E., Jansen, B. J. M., De Groot, Ae., ARKIVOC., (2005), 29, <u>http://dx.doi.org/10.3998/ark.5550190.0006.e04</u>.
- 5. Lewandowska, E., Tetrahedron, (2007), 63, 2107, <u>http://dx.doi.org/10.1016/j.tet.2006.10.040</u>.
- 6. PanneeerSelvam, T., VijayarajKumar, P., Bull. Korean Chem. Soc., (2010), 31(11), 3265-3271.
- Jiang, J. B., Hesson, D. P., Dusak, B. A., Dexter, D. L., Kang, G. T., J. Med. Chem, (1990), 33, 1721, <u>http://dx.doi.org/10.1016/j.tet.2006.10.040</u>.
- 8. Farghaly, A. O., Moharram, A. M., Boll. Chim. Farm., (1999), 13b, 280.
- 9. Kenichi, O., Yoshihisa, Y., Toyonari, O., Toku, I., Yoshio., J. Med. Chem. (1985), 28, 568-576.
- 10. Jen, H. M., Jiau, H. L., Chu, K. S., Bastow, X. Y., Kenneth, B., Hamel, N. Y., Lee, E., Hsiung., K., J. Med. Chem., (2000), 43, 4479.
- 11. Alagarasamy, V., Revathi, R., Meena, S., Ramaseshu, K. U., Rajasekaran, S., Clereq, E. D., Ind J Pharm Sci., (2004), 66, 459.
- 12. Pandiarajan, K., SabapathyMohan, R. T., Gomathi, R., Muthukumaran, G., Mogn Reson Chem., (2005), 43, 430, <u>http://dx.doi.org/10.1002/mrc.1568</u>.
- 13. Vidyarthi, R. D., A Text book of Zoology, 14th ed, S Cnand and co, New Delhi., (**1967**), pp. 329-370.
- 14. Thom, G. W., Adams, R. D., Braunwald, E., Isselbacher, K. J., Petersdrot, R. G., Harrison's Principles of Internal Medicine. In: Mcgraw Hill Co., New York, (1977), pp. 1088-1089.
- 15. Gbolade, A. A., Adeyemi, A. A., Anthelimintic activities of three medicinal plants from Nigeria Fitoterapia, (2008), 79, 223-225.